UP Board Class 11 Maths 8. द्विपद प्रमेय is a Hindi Medium Solution which is prescribed by Uttar Pradesh Board for their students. These Solutions is completely prepared considering the latest syllabus and it covers every single topis, so that every student get organised and conceptual learning of the concepts. Class 11 Students of UP Board who have selected hindi medium as their study medium they can use these Hindi medium textSolutions to prepare themselves for exam and learn the concept with ease.
निर्देश (प्रश्न संख्या 1 से 5): प्रत्येक व्यंजक का प्रसार कीजिए।
दिए गए व्यंजक का प्रसार करने के लिए, हम सूत्र (x + y)n = nC0 xn + nC1 xn-1 y + ... + nCn yn तथा (x - y)n = nC0 xn - nC1 xn-1 y + ... + (-1)n nCn yn का प्रयोग करते हैं।
हल:
(1 - 2x)5 = 5C0 (1)5 - 5C1 (1)4 (2x) + 5C2 (1)3 (2x)2 - 5C3 (1)2 (2x)3 + 5C4 (1) (2x)4 - 5C5 (2x)5
= 1 - 5(2x) + 10(4x2) - 10(8x3) + 5(16x4) - 1(32x5)
= 1 - 10x + 40x2 - 80x3 + 80x4 - 32x5
हल:
\(\left(\frac{2}{x} - \frac{x}{2}\right)^5\) = 5C0 \(\left(\frac{2}{x}\right)^5\) - 5C1 \(\left(\frac{2}{x}\right)^4\)\(\left(\frac{x}{2}\right)\) + 5C2 \(\left(\frac{2}{x}\right)^3\)\(\left(\frac{x}{2}\right)^2\) - 5C3 \(\left(\frac{2}{x}\right)^2\)\(\left(\frac{x}{2}\right)^3\) + 5C4 \(\left(\frac{2}{x}\right)\)\(\left(\frac{x}{2}\right)^4\) - 5C5 \(\left(\frac{x}{2}\right)^5\)
= \(\frac{32}{x^5} - 5 \cdot \frac{16}{x^4} \cdot \frac{x}{2} + 10 \cdot \frac{8}{x^3} \cdot \frac{x^2}{4} - 10 \cdot \frac{4}{x^2} \cdot \frac{x^3}{8} + 5 \cdot \frac{2}{x} \cdot \frac{x^4}{16} - \frac{x^5}{32}\)
= \(\frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5x^3}{8} - \frac{x^5}{32}\)
हल:
(2x - 3)6 = 6C0 (2x)6 - 6C1 (2x)5(3) + 6C2 (2x)4(3)2 - 6C3 (2x)3(3)3 + 6C4 (2x)2(3)4 - 6C5 (2x)(3)5 + 6C6 (3)6
= 64x6 - 6(32x5)(3) + 15(16x4)(9) - 20(8x3)(27) + 15(4x2)(81) - 6(2x)(243) + 729
= 64x6 - 576x5 + 2160x4 - 4320x3 + 4860x2 - 2916x + 729
हल:
\(\left(\frac{x}{3} + \frac{1}{x}\right)^5\) = 5C0 \(\left(\frac{x}{3}\right)^5\) + 5C1 \(\left(\frac{x}{3}\right)^4\)\(\left(\frac{1}{x}\right)\) + 5C2 \(\left(\frac{x}{3}\right)^3\)\(\left(\frac{1}{x}\right)^2\) + 5C3 \(\left(\frac{x}{3}\right)^2\)\(\left(\frac{1}{x}\right)^3\) + 5C4 \(\left(\frac{x}{3}\right)\)\(\left(\frac{1}{x}\right)^4\) + 5C5 \(\left(\frac{1}{x}\right)^5\)
= \(\frac{x^5}{243} + 5 \cdot \frac{x^4}{81} \cdot \frac{1}{x} + 10 \cdot \frac{x^3}{27} \cdot \frac{1}{x^2} + 10 \cdot \frac{x^2}{9} \cdot \frac{1}{x^3} + 5 \cdot \frac{x}{3} \cdot \frac{1}{x^4} + \frac{1}{x^5}\)
= \(\frac{x^5}{243} + \frac{5x^3}{81} + \frac{10x}{27} + \frac{10}{9x} + \frac{5}{3x^3} + \frac{1}{x^5}\)
हल:
\(\left(x + \frac{1}{x}\right)^6\) = 6C0 x6 + 6C1 x5}\)\(\left(\frac{1}{x}\right)\) + 6C2 x4}\)\(\left(\frac{1}{x}\right)^2\) + 6C3 x3}\)\(\left(\frac{1}{x}\right)^3\) + 6C4 x2}\)\(\left(\frac{1}{x}\right)^4\) + 6C5 x\(\left(\frac{1}{x}\right)^5\) + 6C6 \(\left(\frac{1}{x}\right)^6\)
= x6 + 6x4 + 15x2 + 20 + \(\frac{15}{x^2}\) + \(\frac{6}{x^4}\) + \(\frac{1}{x^6}\)
द्विपद प्रमेय का प्रयोग करके निम्नलिखित का मान ज्ञात कीजिए।
टिप्पणी: किसी संख्या की घात का मान ज्ञात करने के लिए, हम संख्या को दो भागों में इस प्रकार तोड़ते हैं कि द्विपद प्रमेय लागू हो सके, जैसे 96 = 100 - 4, 102 = 100 + 2, आदि।
हल:
(96)3 = (100 - 4)3 = 3C0 (100)3 - 3C1 (100)2(4) + 3C2 (100)(4)2 - 3C3 (4)3
= 1000000 - 3(10000)(4) + 3(100)(16) - 64
= 1000000 - 120000 + 4800 - 64
= 884736
हल:
(102)5 = (100 + 2)5
= 5C0 (100)5 + 5C1 (100)4(2) + 5C2 (100)3(2)2 + 5C3 (100)2(2)3 + 5C4 (100)(2)4 + 5C5 (2)5
= 10000000000 + 5(100000000)(2) + 10(1000000)(4) + 10(10000)(8) + 5(100)(16) + 32
= 10000000000 + 1000000000 + 40000000 + 800000 + 8000 + 32
= 11040808032
हल:
(101)4 = (100 + 1)4
= 4C0 (100)4 + 4C1 (100)3(1) + 4C2 (100)2(1)2 + 4C3 (100)(1)3 + 4C4 (1)4
= 100000000 + 4(1000000) + 6(10000) + 4(100) + 1
= 100000000 + 4000000 + 60000 + 400 + 1
= 104060401
हल:
(99)5 = (100 - 1)5
= 5C0 (100)5 - 5C1 (100)4(1) + 5C2 (100)3(1)2 - 5C3 (100)2(1)3 + 5C4 (100)(1)4 - 5C5 (1)5
= 10000000000 - 5(100000000) + 10(1000000) - 10(10000) + 5(100) - 1
= 10000000000 - 500000000 + 10000000 - 100000 + 500 - 1
= 9509900499
हल:
(1.1)10000 = (1 + 0.1)10000
= 1 + 10000(0.1) + अन्य धनात्मक पद
= 1 + 1000 + धनात्मक संख्या > 1000
अतः (1.1)10000 > 1000 है।
निर्देश (प्रश्न संख्या 1 से 2): निम्नलिखित प्रसार में गुणांक ज्ञात कीजिए।
हल:
व्यापक पद Tr+1 = 8Cr x8-r (3)r
x5 के लिए, 8 - r = 5 ⇒ r = 3
T4 = 8C3 x5 (3)3 = 56 × 27 × x5
अतः गुणांक = 1512
हल:
व्यापक पद Tr+1 = 12Cr a12-r (-2b)r
a5b7 के लिए, 12 - r = 5 ⇒ r = 7
T8 = 12C7 a5 (-2b)7 = 12C5 a5 (-128) b7
12C5 = 792
गुणांक = 792 × (-128) = -101376
निर्देश (प्रश्न संख्या 3 से 4): निम्नलिखित प्रश्नों के प्रसार में व्यापक पद लिखिए।
हल:
व्यापक पद Tr+1 = 6Cr (x2)6-r (-y)r = 6Cr x12-2r (-1)r yr
हल:
व्यापक पद Tr+1 = 12Cr (x2)12-r (-yx)r = 12Cr x24-2r (-1)r yr xr = 12Cr (-1)r yr x24-r
हल:
चौथा पद T4 = T3+1 = 12C3 x9 (-2y)3
= 220 × x9 × (-8y3)
= -1760 x9 y3
हल:
13वाँ पद T13 = T12+1 = 18C12 (9x)6 \(\left(-\frac{1}{3\sqrt{x}}\right)^{12}\)
= 18C6 (96 x6) \(\left(\frac{1}{3^{12} x^{6}}\right)\)
= 18564 × (531441 x6) × \(\left(\frac{1}{531441 x^{6}}\right)\)
= 18564
हल:
दिया है: nC0 an = 729 ...(i)
nC1 an-1 b = 7290 ...(ii)
nC2 an-2 b2 = 30375 ...(iii)
(ii) को (i) से भाग देने पर: \(\frac{n b}{a} = 10\) ...(iv)
(iii) को (ii) से भाग देने पर: \(\frac{(n-1) b}{2a} = \frac{25}{6}\) ...(v)
(iv) और (v) को हल करने पर: n = 6, a = 3, b = 5
उत्तर: a = 3, b = 5, n = 6
हल:
x2 का गुणांक: 9C2 37 a2
x3 का गुणांक: 9C3 36 a3
दिया है: 9C2 37 a2 = 9C3 36 a3
⇒ 36 × 37 a2 = 84 × 36 a3
⇒ 108 a2 = 84 a3
⇒ a = \(\frac{108}{84} = \frac{9}{7}\)
उत्तर: a = \(\frac{9}{7}\)
हल:
(1 + 2x)6 = 1 + 12x + 60x2 + 160x3 + 240x4 + 192x5 + 64x6
(1 - x)7 = 1 - 7x + 21x2 - 35x3 + 35x4 - 21x5 + 7x6 - x7
गुणनफल में x5 का गुणांक ज्ञात करने पर: 171
हल:
(0.99)5 = (1 - 0.01)5
≈ 1 - 5(0.01) + 10(0.01)2
= 1 - 0.05 + 0.001
= 0.951
--- अध्याय समाप्त ---
UP Board Class 11 Maths 8. द्विपद प्रमेय Solution is available at our platform https://upboardSolution.com in hindi medium for free of cost. Content provided on our website is free of cost and in PDF format which is easily available for download. Getting the UP Board Solutions for Class 11 will help student to achieve good learning experience so that they can study effectively. UP board holds examination of more than 3 million students every year and majority of the question of exams are from their UP Board Solutions. That’s why it is important to study using the textSolution issued by UP Board.
It is essential to know the importance of UP Board Class 11 Maths 8. द्विपद प्रमेय textSolution issued by UP Board because students completely rely on these Solutions for their study and syllabus offered by UP Board is so balanced that each student should be aware about the importance of it. Below is the list of Importance of UP Board Class 11 Maths 8. द्विपद प्रमेय :
There are various features of UP Board Class 11 TextSolutions, some of them are mentioned below so that you student can understand the value and usability of the contend and understand why Uttarpradesh board has prescribed these Solutions.